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ABSTRACT

As a typical free boundary problem, a Stefan problem is studied from two
analytical and numerical points of view. 1In the first one, by changing the
dependent variable which stands for the temperature distribution, the Stefan
problem is transformed into a variational inequality (V.I.). It is well known
that V.I. can be approximated by a penalized problem. The second one is the
method of the integrated peralty which gives a new interpretation of this
penalized problem. For these different problems, existence and convergence
theorems are given and, moreover, numerical methods to solve them are

presented. Finally some numerical results are given.
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SIGNIFICANCE AND EXPLANATION

<
We can observe many phenomena involving Free: Boundaries in various fields
)

of engineering and applied sciences, for example, free boundary problems in

optimum design, the pollution of air and water, the equilibrium of plasma.
For such problems it is important to develop reliable computational methods
which are practically efficient in applications. Naturally, a crucial point
in numerical methods for free boundary problem is how to deal with the moving
boundary. In order to meet this difficulty, various approaches have been
proposed; they can be classified into two groups. One of them is to follow
the free boundary directly. The other is to tranform the or}ginal problem
into an auxiliary problem with a fixed boundary. Té;p.tééﬁhique uses the
penalty method and falls into the second group.

In this paper Qé';pply this method to the Stefan problem which arises in
the analysis of melting of ice adjacent to a heated body of water. The
egssential idea of oﬁf’ﬁethod is to trangform the Stefan problem into an
initial-boundary value problem for the heat equation defined in a cylindrical
domain, occupied joizs}y by water and ice, with an artificial heat absorbtion

AV,

in the ice region. Ouf formulation is closely related to the approach using
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NUMERICAL ANALYSIS OF A STEFAN PROBLEM

* * %
H. Kawarada and C. Saguez

INTRODUCTION \

Free boundary problems appear in various fields of 4

engineering and applied sciences, for example, problems

in mechanics of continuous media, the equilibrium of

plasma, the pollution of air and water and others.

Here we restrict our interest to systems of Stefan type

Y

where exists a change of phase (solidification, lique-

x.

faction, sublimation...)

——

So, we consider a problem of Stefan tvpe (Pr)0 in

one dimensional space. For this problem, we introduce

[

successively 1) a variational inequality (V.I.) by

changing the depending variable of (Pr)o; ii) a first
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penalized problem (Pr)l, which is directly introduced

from (Pr)0 by means of the method of integrated penal-

ty; ii) a second penalized problem (Pr)2 by changing

the depending variable of (Pr)l, which arises as a

penalized problem associated with (V.I.). The plan is

following:
Introduction
1. Formulation of the problem and associated varia-

tional inequality
2. Introduction of the penalized problems (Pr)l and

(pr),
3. Some results of existence, uniqueness and conver-

gence
4. Proofs of Theorems ;
5. Numerical results 14
6. Conclusion !a

;

l. FORMULATION OF THE PROBLEM AND V.I. |

We consider a one phase Stefan problem in one dimen- !
sion, o6(x,t) denotes the temperature of the solid

and x=s(t) is the equation of the free boundary.

FPor simplicity, we take all physical constants equal

to 1.

such that:

(1.1) %%=-:-79- 0O<x<s(t), 0<t<T, |
x t

(1.2) 0(0,t) = £(t) oct<m,

(1.3) 8(s(t),t) =0 0<t<T, ‘

(1.4) 8(x,0) = 8,(x) O<x<b,

(1.5) $£=-2 sw,0+n) o<,

The problem (Pr)o is to find {8(x,t), x=s(t)}

2




(1.6) s(0) = b,

where £(t), h(t), eo(x) and b are given. The term h(t)

in (1.5) can represent, for example, a heat source
along the free boundary. Such a phenomenon can be ob~
served on the heat shield of a space capsule during the
entry phase in the atmosphere or in the continuous
casting process taking the convection in the liquid

into account {8].
Here we assume:

[ £(t) € 2 T(o,m)* (0<t<1), 0< £(t) <a
in {O0,T},
n(t) € clio,m, 0< h(t) g B#w in (0,T1,

(A1) { O < b <
8o(x) & c2(0,b), 8,(b) = 0, 050,(x) <y

in [0,b],

£(0) = 60(0).

\

Let Ro be such that s(t) < Ro for any t ¢ (0,T).
We denote by a(x,t) the extension of 8(x,t) by zero on

. the region (s(t) <x< RO’ 0<t<T). We introduce the
new variable y(x,t):
Ro
(1.7) yix,t) = I @(E,t)d&-
x

hd Cm'T(O,T), m integer, 0<t <1, is the space of m
times continuously differentiable functions in

continuous with exponent T.
** The condition h(t) > 0 can be relaxed.

(0,T), such that the mth derivatives are HOlder

T
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Noting that, by the maximum principle, 'é'(x,t) 20, we
deduce:

ds ' .
(1.8) —gethv) g0 in 0<t<rT.

Then, after some calculations, we prove that y is
solution of the following variational inequality
(V.I.): ({11] C. Saguez)

To find [ vy e L2(0,T;H1(Q)).

$ e L2075 2@,

s(t) e ul(o,1),

| 2 = (0,Ry)
such that
(1.9) AL, o-y) +aly,0-y) 2 (-F2 +h(t) , o-y)
+ £(t) (¢4 (0) -y(0,t)),
€K = {¢e—Hl(Q) ;$(R) =0, ¢ >0 a.e. in Q},
Ro
(1.10) y(x,0) = y,(x) = j NG
x
(1.11) s(t) = Inf {x|y(x,t) =0}, O<t<T,
8(0) = b
(1.12) s(t) < Ro
R R
where (u,v) = Ioou(x)v(x)dx, a(u,v) = Ioo%:--g—: dx
and ¥,0x) = (6,0x) 0<x<b,
0 b:xiky




This inequality differs from an ordinary variational
inequality by the presence of the term -g%'+h(t) in

the right member of (1.9), together with s(t) which

is defined in (1.11). An inequality of similar type
was studied by A. Friedman-D. Kinderlehrer [3] and
Nguyen-Din-Tri {10]. A complete study of (1.9)-(1l.12)
is presented by C. Saguez [1ll].

2. INTRODUCTION OF THE PENALIZED PROBLEMS (Pr) 1

AND (Pr)2
2.1 The method of integrated penalty
Here we give the principle of the method of integrated
penalty introduced in [6] by one of the author.
Originally, the penalty method has been widely used

in optimization problems with constraints. It is also
a convenient tool for the study of partial differential
equations (see for example J.L. Lions [9], H. Fujita
and N. Sauer [4]).

Now let us consider the following penalized
problem defined in QT= (O,Rl) x (0,T):

for any € >0,

an® _ acn 1 €
(2.1) 38 ~ ?x—z- =X (x,t)w in QT,
(2.2) (0,t) = £(t) 0<t<T,
(2.3) ﬂe(Rl,t) =0 0<t<T,

(2.4) € (x,0) = ¥ (x) 0<x <Ry,




where x = x(x,t) in (2.1) is characterized by the moving
boundary x =y (t) such that:

(0)

0 in Q' = {(x,t) ; 0<xgplt), 0<tc<T}
x(x,t) =
1 in Qél) - QT-Q';‘O)

We assume that x=y(t) is sufficiently smooth in (0,T),
0<ylt) <Ry (0<t<T) and 1,,(0) =b. The problem (2.1)-
(2.4) has a solution fe H (Q )*,
We easily verify that as ¢+ 0, =
function "0 strongly in H (Q(O)) and converges to zero
strongly in H (Q(l))** In fact, noe C (Q(O)) is the
unique solution of the following initial boundary value

€ converges to a

'problem:
0 20
(2.5) am_ -3 "2 in Q(o)
9 A%
(2.6) 1r(°) (0,t) = £(t) O0<t<T,
(2.7) O, t) =0 0<t<T,
(2.8) n%(x,0) = 0 (x) 0<x<b.
We define:
1l e . '
(2.9) p. =p.(x,t) = (=x7)(x,t) in Q. 1

e Fe € 7

* Hm’“(QT), m, n, integer, is the Sobolev space: ,
2 u 2
{¢el (QT), D€L (Qg) (D<pgm,

DI¢€L2(QT) (0<ygmn)}.

+ wto) = ulrligy




R
(2.10) q, = g (x.,t) = I 1 p_(E.t)dE in Q.
X

Then we have:

Proposition 2.1 Let e+ 0

0
(2.11) p -+ -——(!b(t) t) -8 (x-y (t)) in ' (QT)'
3n0
(2.12) qe-*'-7Sr(w(t).t)‘(l-x(x,t)) in S’(QT).

The proof for the elliptic case was given in [6]. 1If
we repeat almost the same arguments as in [6], we can
show (2.11)-(2.12).

The term q, is now called the 1ntegrated penalty.
q. (p(t),t) approx1mates the flux of = (x t) through the

moving boundary x =y (t).

2.2 The first penalized problem

H. kawarada and M. Natori {5] transformed (Pr)0 into

an initial boundary value problem defined in a cylin-
drical domain occupied jointly by water and ice for the
heat equation with an artificial heat absorption in the
ice region; we have the Problem (Pr)l:

To £ind: [ 0%e u¥rl(gy) nctO@pe

se [ Cl(OpT)
Qp = (0,Ry)*(0,T)

* m’n(QT). m, n integer is the space:

{6 c@y, pheec@, (0gugm, DloeC(@y

(0gygsn)l.

™ .t e e mm———— -
- Tt e mmmas e o




such that: for any € >0,

€ 2 ¢
8- _ 96" _ 1 € .
(2.13) _at— = -_3):2— c x€ ;] in QT'
(2.14) 8%(0,t) = £(t) 0<t<T,
ae®
(2.15) W(RO't) = 0 0<tc«T,
(2.16) 8%(x,0) = B’O(x) 0 <x <Ry,
€ R
ds™ _ 0,1 €
(2.17) - Io ‘e?‘e 0%) (£,t)dE + h(t) 0<t<T,
(2.18) s€0) = b ; s%(t) <R, for any te(0,T].
0 in 0<x<s®(t), 0<t«<T,
(2.19) Xe = X (X,t) =

1l in ss(t)<x<R O<t<T.

0’
The presence of the penalty term -%xeee in (2.13) can
approximately replace (1.3) if ¢ is sufficiently small.
Further we should note that the integrated penalty of
(2.17) approximates --%%-(s(t),t) owing to proposition
2.1.

As a practical application of this method in the
two dimensional case, we refer to a study of the be-

haviors of frozen soil in a neighbourhood of an
underground storage tank of LNG (Liquid Natural Gas),
which is kept at the temperature of -162°C. A program
of this method was worked out and was established for
practical uses by I. Yanagisawa [13].
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2.3 The second penalized problem

Let us use the similar fransformation as in (1.7).
we define;

€ R0 €
(2.20) Y {x,t) = I o (£,t)dE.
x

By integrating the eguation (2.13) on (O,Ro), we

obtain:
€ 2 € R
(2.21) v 2 L (70, 5, 0008% (i85,
IK Ix
Now we have:
R R £
e _ 110 € _ 1 0 Y
x
1€ s°(t) LX< Ry
R €
e _1[03% g =1y
(2.23) AT = c fx 3E ag Y (x,t).
€
1£ Q< xX<S (t)l
R €
e __L1({0o 2 = 1,8 (s
(2.24) AT = - 3 Ls(t)-f(di =Y (s"(t).t).

Further by (2.17), we have:

R £
as® _ _ 1[0, 3
(2.25) = - 2 Io x‘_..l—ax dx + h(t)

= _21_ & (sS(£), &) +h(E).

Therefore, as yE is a decreasing function in x, we
deduce:




€

1 €
(2.26) A% = 2 y*(sS(t), 00 (1= x ) + Lx v x,0)
l e, ¢ 1 € €, €
=cY (s (t),t) + Exe(y (x,t) -~y (s (t),t))
_ as© _ 1, ¢ __ dast -
= 3 h(t) - E-(Y -t.(-aT--h(t))) .
Thus we have the following nonlinear problem: (Problem
(Pr)z)
To find y e 'y,
s® € CZ(O,T)
such that:
€ 2 € 3 €
3y~ _ 9 l,.,6e __,ds” _ - _4ds .
(2.27) 5% ?:'T*' ely —elgg-h) -Fg+h inQp,
3vE
(2.28)  SE-(0,t) = -£(¢t) o<t<rT,
(2.29) yE(Ro,t) =0 o<t<T, 1
(2.30)  y%(x,0) = ¥q (%) 0<x<Ry,
€
(2.31) ‘Lit= %-ye(se(t),t)+h(t) 0<t<T,

(2.32) s%(o0)

b.

3. SOME RESULTS OF EXISTENCE, UNIQUENESS AND CONVERGENCE !
Theorem 3.1 Under the assumption (Al), (Pr)l has

a unique solution {ee, s®(t)} which satisfies:




o ¢ nrl (Q)nc (Q).

s€(t) € ct(o,m.

Theorem 3.2 Under the assumption (Al), lPr)2 has a
unique solution {y€ , s°(t)} which satisfies:

Y- > 0, y$ e c? (QT),
s€ e c2(0,1).
Theorem 3.3 Under the assumption (Al), let ¢+ 0,

then the solutlon {y ; sT(t)) of (Pr)z converges to a
solution {y , S (t)} of the (v.I) such that:

i) ye - yo weakly in LZ(O,T; Hz(Q)),
ii) s ~ g° weakly in HY(0,T),
£ 0 : T 1
s +s strongly in C (0,T)*, (0<t23).
Theorem 3.4 Under the assumption (Al), let €-+0,

then the solution {6° ; s®(t)} converges to the unique

solution of (Pr), such that:

i) o€ - %0 weakly in H'(Qn),
ee(-,t) -+ 30('.t) strongly in LZ(Q)
for any t ¢ [0,T]);
11) s « 5%  veaxly in ml(o,m),
st - so strongly in c'(o0,, (05_15%—) .

(0,7

* c'(0,T)




30 is the zero-extension of 60 into Q;.

Theorem 3.5 Under the assumption (A.l), the (V.I) has

a unique solution yoec

3'l(QT) and so(t)=Inf{x:yo(x,t)=0}
€ cl(o,T).

By means of Theorem 3.3, we conclude that (Pr)2 is
interpreted as a penalized problem associated with the
(V.I). Therefore we have a parallel structure, one
level of which is a penalization with respect to (Pr)o
and the other level is with respect to the (V.I).

Thus we have the general scheme:

Method of integrated penalty

(Pr)o: (Pr)lz

(1.1)-(1.6) (2.13)-(2.19)

R R
l y(x,t) =[ 0% (g, t)ag l v (%, t) =J 0 (£,t)a€
X X

V.I: (Pr)2:
(1.9)-(1.12) (2.27)-(2.32)

-12-




4., PROOFS OF THEOREMS
4.1 Proof of Theorem 3.1.

We put:
b
RO = b+Joeo(x)dx+Cl(b,T) + 8T,
C.R
_ 070
Ce = = + B8,
and

Co = sup(a,y).

The constant Cl(b,T) is defined in the appendix I.
Define a convex set Kl in C[O0,T]:

K, = {8€C[0,T] ; b<o(t;) co(ty) <Ry

for 0<t, <t,<T and ¢(0) =b}.

First let us study some regularity properties of a
solution of the initial boundary value problem (2.13)-
(2.16), in which the characteristic function Xe is
replaced by:

0 in 0<x<s(t), 0Q<tc<rT,

Xg = xs(x.t) = {

1 in s(t) <x<R O<t<T,

ol

for some s(t) € Kl.

For simplicity, we denote this problem by (Pr)s.

Proposition 4.1 (Pr)s has a solution 8 which satis-
fies:
(4.1) o e nrl(g)

~-13-




(4.2) 6 € C (QT

Proof It Ls easy to prove the existence of the
solution 8 e!i (Q ). Here we focus on the proof of
(4.2). Let us 1ntroduce a function x'S
) 6(0,60] (§4> 0) such that:

€ C (R ) for some

i) %ﬁr-; 0 for ¢ € r!

ii) xSy = (o (€< 0,
> 0 (0<Eg<8§),
1 (6<E).

Obviously, xﬁ(x—s(t))-*xs in LZ(QT) as § + 0. Let 96 be

the solution of the initial boundary value problem, in
which x  of (2.13) in (Pr)_ is replaced by x°(x-s(t)).
5. 2,1 o208 _ 3%

ecC (QT) satisfies 3 ° 2;;;
--%x‘s(x-s(t))-e‘S in Qp- If we refer to Theorem 4.1 in

§4 of chapter V in (7], we have:

That is to say, 6

(4.3 | ( t,) - 366( t.) |
-3) x ‘X151 3% ‘X2r %)

a/2
< Cllxg=x,|% + [t -ty |

for any (xl.tl) and (xz,tz) GQT,

(4.4) Max \ (x t)] < C

(x,t)€T,, 6

Here we should note that CS' CG and a do not depend on
s 6(0,601. By the theorem of Ascoli-Arzela, it gollows
that there exists a subsequence, still denoted 6,

such that:

-14-
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(4.5) 8% + o in C(Qp),
(4.6) 20° | 28 in €(@,) hen § + 0

¢ ax ax n QT ’ when ’
which implies (4.2). [ |
Proposition 4.2, The solution 6 =6(x,t) of (Pr)s

has the following estimates in Qn:

(4.7) 026 2¢C, in Q
Ry 20 2
(4.8) I | (-,t)l dx g C, for any t €(0,T),
2
(4.9) ” | | dxdt g Cj,
2202
Q' 3x

where the constants CO' C, and C3 are independent of ¢,
but C depends on €. All the constants Co, CZ' C3 and
C4 are independent of s (€ K ).

Multiplying both sides of (2.13) by F— and inte-
grating in QT’ we easily obtain (4.8) and (4.9). Here
we used (I.10) in the appendix I. By (4.8) and (4.9),
we have (4.10). By using the maximum principle, we
easily prove (4.7) [ |

Now we define a transformation A such that:

(4.11) s & Kl + r=ASs

. 1 t Ro
(412 r=rzto = b+l [ ff Qg0 e natiar
0’0

t
+ I h(t)dr,
0

QO ——

> T
NI

PR P S

o~ + e




where 0 is the solution of (Pr)s
Let us verify some properties of A.

Lemma 4.1. For any s é€K,,

(4.13) | As €K,.

Proof First, we easily pfove that r(t) satisfies:
b < r(t;) < r(ty) for 0 < ) < t;, < T

because 6 > 0 and b > 0.

Next, by an integration of the equation satisfied by 66

in Qt' we obtain:

R t (R
(4.14) [ %% (x,trax + 1 I [f 0 %6%) (x,t)dxldr
0 0lo
b X
5[ e(de+nmxl—Y+n0H in 0<t<T.
0 O0<t<t

Note that the last term of the right side of (4.14) is
estimated as follows:

(4.15) Max | (t 0) | £C,(b,T) for any §e(0,5,].
0<t<T

The proof of (4.15) is given in the appendix I. Let

§+0 in (4.14), we have:
1 t Ro b
(4.16) Y I {[ (xg8) (x,r)dx]dr;[ g (x)dx +C, (b,T)
0’0 0

for 0<t<T.

Then, by (4.12) and (4.16), we have (4.13). [ |

|
}

:%




Lemma 4.2. A is continuous in Kl.
Proof Let 0 (resp. 6') be solutions of (Pr)s

(resp. (Pr)s.) for s,s'e Kl and let r=As and r' aAs’.

We have:
Co ,
- ' — -
(4.17) jr-r IC[O,T] 2 < T|s-s IC[O,T]
T. —at _
+ = Role 9 ‘C‘Q'r"
On the other hand, we have:

c,/ZRT
oo 20770 figagt
(4.18) le~e IC(QT, 2 Is~s*lcro,m1-

The proof of (4.18) is given in the appendix II. With
(4.17) and (4.18), we easily obtain the continuity of A

in Kl. .

Lemma 4.3. A is compact in Kl.

Proof From (4.12), we have:

ar _ 1 (Ro .

(4.19) at -~ & J (xse) (s,t)dx + h(t) in 0<t<T.
* Then:
; (4.20) 0<% ¢ in 0<t<T

* E_ 3 a-t-- E - -_ ’
Which implies the compactness of A in K- ]
|

Proof of Theorem 3.1 Kl is a bounded, closed convex

in C[0,T]. By the Lemmas (4.1)-(4.3), we see that A is ’
continuous compact from K1 into itself. Then we can j
use Schauder's fixed point theorem. So there exists,

at least, one fixed point se K1 such that:

-17-
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(4.21) s = As in Kl.

Thus (Pr)1 has, at least,loge_solution which sag-
isfies 8 € u? (QT), pecC’ (Qp) and x=s(t)e C”(0,T).
The uniqueness of the solution of (Pr)l will be proved
at the end of the proof of Theorem 3.2. B

4.2 Proof of Theorem 3.2.
Let {8(x,t),s(t)} be the solution of (Pr)l. If we
refer to the paragraph 2.3, then:

R
(4.22) y = y(x,t) = J % (c,trag > o0

x
and x s(t) satisfy (Pr)2 Because of yc—C (QT) and
seC [O T}, we see that:

ay

(4.23) 3t

éC(QT).

Furthermore, we have:

2

a’s _ 13y ds , 13y dh
(4.24) ;:5 & 3% (s(t),t)dt + =2 at(s(t),t) + 3t
in 0gt<T
which implies:
[
(4.25) s € c%(0,m).

Therefore (Pr) has, at least, one classical solution ‘
{yec (QT), x—s(t)ec (0,T)}. ‘
Suppose that (Pr)2 has two solutions {yi;si(t)}

for i=1,2. Let us estimate the difference between
dsl ds

T and ?ﬁ?’ we have:




-

i

(4.26) g2 - 72! £ Zlyy (s, (8),8) =y (s, (8) ) |
1
+ ly, (s (£),t) -~y (s,(t),t) ]
1
< =lyy -y, _
el 2@y
3y
*%'*a'x‘zl ~ 18178, .
C(QT) c(o,T]
Because
(4.27) Y2 c
* K|~ = 0’
(@)
we have
ds ds
1 _ 95 1
(4.28) T " T (g, =ly; - v,) -
! T
c

| .
2'¢10,1)

We have the following inequality (see the appendix IO):

(4.29) lyy =¥y, _ f Xy, -v,I
1l 2 C(QT’ 0 € 17Y2 (QT)
ds ds
+ 2 .a—]: 2 }at.
c(o,T]
From (4.29), we obtain:
ds
(4.30) lyy = v,l ° ' 2
C(QTo clo T l
for o<'r0< €.
_19..
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Using (4.28) together with (4.30), we have

ds1 d52
(4.31) | - |
dt gt clo,T,)
< (2T0 . COTO) |dsl _ d82
- e-To £ dt dt C[0.T0]

for 0«< 'ro <E.
Choose 'ro='ro(e) to satisfy:

2T C,T
0 0°0
eT, =< 1 for any € > 0.

(4.32) 0 <

That is:

€
(4.33) 0 < To(e) < Inf{ﬁ(%ﬁco-/C2°+2C0+9),e}.

Then we have a contradiction and we deduce

ds1 ds2
(4.34) F(t) = E—(t) in O£t£To(€) .

Because sl(O) = sz(O) =b, we have
(4.35) s, (t) = s,(t) in 0t Tyle).

T .
With (4.33) and the same procedure {[T_07?T] +1} times,
We obtain:

(4.36) sl(t) = s,(t) in0<stsT,
which implies:

(4.37) Yy (x,t) = y,(x,t) in Q.

Thus this proves the uniqueness of the solution of
(Pr)z. From this uniqueness, we easily obtain the

»
A I TP <




uniqueness of the solution of (Pr),. Let {61 v sl(t)}
and {68, , sz(t)} be two solutions of (Pr),. Then

R R
0 =10

satisfy (Pr)z. From the uniqueness of the solution of

(Pr)z. we deduce:
(4.38) s, (t) = s,(¢) in 0< t<T.

On the other hand, we have,

R
(4.39) I °(el(§,t) -ez(E,t)dE; =0
X

for any (x,t)e 6,1,.

If we differentiate (4.39) with respect to x, we have

4.3 Proof of Theorem !
Here we denote by {y® ; s®(t)} the solution of !

. !
Lemma 4.4. yf verifies the following estimates: !
€

Y € o= |
(4.41) Cp X35 <0 and 0y < CyRy in Q. '
R 2 ¢ |
0|3 2 _
(4.42) [ l——xz-(-,t)l dx < C2 for any t €(0,T), '.
0 X |
ay° [2 |

(4.43) ” '-X—l dxdt < C.,

ot = =3

O




3

3%y |2
(4.44) ” [—13—‘ dxdt ¢ C,. ]
Q' 3%

We easily obtain (4.41)-(4.44) from (4.7)-(4.10) in
Proposition 4.2.

Lemma 4.5. se(t) verifies the estimate:
ds®
®l200,1) = 7

where C7 is independent of ¢.

Proof From (2.27), we have:
2 ¢
ds® axe 3 : €
(4.46) = h=- +-—22— in 0<x<s (t)
dt ot ax !
Q<t< T,
From (4.46), we have
Ty .12 €2 :
(4.47) bf | atg 3[” Y- axat !
0 Q
2. €,2
+ [I 3—%rl dx dt
QT ox
2
+ R0 T-8°].
By (4.42), (4.43) and (4.47), we deduce: ;
(4.48) ‘%s{_ 2 _5_/%- CzT+c3+R°'r37 = c7. l X
L (0,T)
Lemma 4.6. If ¢+ 0, then (ye,x=se(t)) converges to ]

{y ,sott)} in the following topology:




(4.49) st + s strongly in L2(0,m),

strongly in C'(0,T), (0gT ;%—)

as® ds . 2
(4.50) ac - I weakly in L (0,T),
€ 0 . 2
(4.51) y =y (20) strongly in L (QT) '
(4.52) 2L - 3y’ strongly in L2(Q.)
. ax ax g Y T ’
32y 32,0 2 2
(4.53) X~ 2% weakly in L°(0,T: L (0,Ry)),
X ax
4.50) L . ay° weakly in L2(0,T; L2(0,R)))
* ot at et U M

Define a convex set K2 such that

K., = (6e1?(@) ;1620 a.e. in a}.

2

I1f we multiply (2.27) by (¢ -ye) r 0 eKz, and integrate
in QT' then we have: :

7T QX_E_ e T a2 € €
(4.55) ]0( L=, 0=y )dt - I (*y-, $-y ) dt

0 3¥x
1 T € - € T £
- EI ((y +eae) , O~y )dt = I (aE.Cb-y ydat
0 0
~/
¢ €K,.
. _ ds®
where ae = - g + h(t).

Now, using the monotone property of (ye + eac)-.

and because ¢ eKZ, we have:




(4.56) - LiyFrea )"0 -5

= 2067~ (yS+ca ) 7,0 - (y_+ea))

- ((y€+ea£)-,a€)

< -((ye+ea€)-,as).

Using (4.45), we have

(4.57) ea_ - 0 strongly in LZ(O,T) as € = 0

By (4.51) and (4.56), we have

(4.58) (ys+ea€)- - (yo)_ = 0 strongly in LZ(QT)
as € + 0

From (4.58), we have

T
(4.59) f ((y+ea ) ,a )dt ~ 0 as e + 0
0 € [

Therefore, using Lemma 4.6, (4.56) and (4.59), we
obtain at the limit in (4.55):

T 3 0 0 T 32 0 0
(4.60) [o( ., 0=y )at - IO(?x%—. ¢~y )dt

T 0
> I (ag.o-y% at.
0

Here a, =~ 5% + h. The partial integration of the

second term of the left side of (4.60) yields (1.9).

-24~
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4.4 Proof of Theorem 3.4.
For simplicity, we assume f =0 in (0,T).

Step 1l; convergence of 6% and s<.
We already proved the convergence of s (t) in
Lemma 4.6. From Proposition 4.2, we can extract a

subsequence, still denoted ee, such that:
€ . 1
(4.61) 6" -~ w weakly in H (QT),

8% » w strongly in Ll(QT),

and we have ((4.8) Proposition 4.2):
Ro,aw 2 v

(4.62) f |5 )| “ax < C; t €(0,T).
0 X

Define:

a%(e) = (x; 0<x<s®(e)) (0<t<T),

al(ty = o - %) ,

0= u 2%y,
O<t<T
and t= U al(e).
0<t<T
Lemma 4.7. The function w satisfies:
(4.63) w| o€ t? (0,7 ; 1y (@2 (e));
Qp
(4.64) wl 1 = 0.
Qp
Proof First we prove (4.64). We have.

-25-
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(4.65) ” X |eE|2dxdt < €°Cge
Q. © =
where C8 is independent of €. From (4.59) and (4.61),
we get
2 -
(4.66) “ (wjZaxat = o.
QT
By using (4.62), we have
X2, 9w
(4.67) Wik, £) =wi(x,, £) ] < f 129 (., ) |ax
1 2 - X
x
1
1
2
< @-lxl XZI Vxlpxzé(OpRo). VtE(O,T), |
which implies, with (4.64) ‘
(4.68) w| =0 Yt e(0,T).
x=s (t)
Since we HY(Q.), we have (4.63). |
T , ,
Lemma 4.8. w| 0 satisfies: l
Lemma %.98. Qd T
T .
3w aw 3¢ 3
(4.69) j[ 03 ¢ dx dt + JI 0 3% 3% dxdt = 0
oy Qp

Yoer2(0,7; Hé(ﬂo(t))).

Proof For any ¢, we can define ¢% such that:
1 efent Oy ; 1) ¢5(0,6) = 0 (te(0,m);

) x 6% =0 in Qp

-26-



iv) ¢% - $ strongly in L2(QT) and

€ 3

>

(s3]
©
< ¢

|
|

strongly in LZ(QT) when ¢ » 0.

Q
%

X

e @

Here ¢ denotes the zero-extension of ¢ into Q;. If we
multiply (2.13) by ¢ and if we intearate in Q., we have:

f 30% e 36% 2¢° _
(4.70) Jf —a_t- ¢ dxdt + ![ _5_}(— Wd,‘dt = 0.
Q Qn
At the limit, we obtain,
(4.71) f S¢ $axde + 2w 38 4 ¢ = 0. |
JQ Q 9X 9X
T

Now let us consider the following initial boundary
value problem (Pr) o’

¢ 2
36 ) . 0
— R 1nQ
at axi T
i 6(o,t) =0 0<t<T,
e(so(t),t) =0 0<t<T,
| 6(x,0) = Bo(x) 0<x<b.
L ]
1l
Here we should note that soe cﬁ(o T). Refering to
Friedman (2], we easily obtain that (Pr) 0 has the
unique solution eoe.cz l(QO) which satlsfzes
0
¥ _s%e1,t1€clo,m.
Lemma 4.9. w satisfies:

(4.72) wix,t) = 89(x,t) a.e. in Qg.




Proof Put W=w-6. Then W verifies:
aw W 3¢ i}
(4.73) IJ 0 3¢ ¢ dx dt + ” 0 3% 3x dxdt = 0
QT Q

Veoer?(o,T; Hé(Qo(t))) .

Put ¢ =W in (4.73). Then

2
1 2 W
(4.74) EIW(',T)I + [IQO -5-’—(! dxdt = 0,

which implies (4.72). [ |
We modify w on a null set so that (4.72) holds for
every (x,t) in Qg, i.e., w(x,t) = eo(x,t).

Step 2; eo(x,t) and so(t) satisfy the Stefan condition
(1.5). Define

R
(4.75) q® = ¢(x,t) = f Q(Elx8 8%) (g,t)de.
X
Lemma 4.10. If ¢ + 0, we have
(4.76) g® = -e0(s%(t), ) (1 - x%x,00)
. 2
weakly in L (QT) .
Proof From (2.12) (Proposition 2.l), we obtain
(4.77) a® » -00s%, 0 a-x"e)  in &y

From (4.7) (Proposition 4.1), it follows that:

€
(4.78) 2 - h=q%0,t) > qf(x,t) 3 0 in Q,.,
-28-




then we have:

€
(4.79) la ILZ(QT) < /Ry (C 4+ 8/T) . f
With (4.79), (4.77) implies (4.76). [ |

Finally we show that 60 and so(t) satisfy the

Stefan condition (1.5). PFrom (2.17), we have:

ds® £ .
(4.80) TiT:_(l_Xe) = q (l-xs) +h(l-x€) in Q‘I"

PRV 0k A W- T oo

Integrating (4.80) in Qt (0< t<T) and passing to the
limit, we have:

(4.81) ” 0 ddst dxdr = -”
Q¢

0 ax (s (t),1)dxdr
Q.

|

+ II h dxdrt. |
0 i

2

Here we used (4.76). By Nikodym's theorem, we have i

t 0 t
(4.82) () = b-[ 32—(s"m r)dr-!-[ h(t)dr.
0 0

Since -—-—(s (t),t) €cl(o0,T], (4.82) implies (l1l.5).
Because of the unique existence of the solution of
(Pr)o, all the sequence {e (x, t),s (t)} converges to
{e%x,t,s% )}

4.5 Proof of Theorem 3.5.
From Theorems 3.3 and 3.4, we have:

€. 'é'o strongly in LZ(QT)
ay® . ay? 2
and 2%~ 3% strongly in L (QT) . g

f
| l




Since

u— - - e i
we have
(4.84) 30—-323 a.e in Q
. - X ° T®
We obtain
1
(4.85) 0z y (R, ) = yO(ry, ) € BE(0,T).

From (4.84) and (4.85), we have

Royo
X

(4.86) v (x,t) = [ (E,t)dE.

Since 60 verifies 0 < 6°<:Co in Qg, we have

(4.87) sO(t) = Inflx; yP(x.t) =0} (0<t<T).

Here x==s°(t) is the free boundary of (Pr)o correspond-
ing to e°. {60, so(t)} is the unique solution of

(Pr)o. Therefore the (V.I) has a unique solution.

5. NUMERICAL RESULTS

Here we present the numerical methods used to solve

Problem (Pr)2 and the (V.I). The results concerning

(Pr), were presented in H. Kawarada-M. Natori [5].
We use the following algorithms.

5.1 Problem (Pr)2

1) Initialization.

Put y; = yo(x), sg = b for n=0.




c,0 €
’ = s

2) 1=0, Sn+l n

3) Determine yi;i solution
€ _of 2. ¢e,i €.i_ €
(5.1) Yn+1,i " ¥n - d yn+l.+1( €,i (sn+1"sn__hn+1))_
. At ax? Ynel ™ VT AE
se ,i E
- n+l "~ +hn+l
At ’
dy® !
(5.2) “*1(0) = gt
d »

|
o
.

(5.3 ¥SIT(Ry)

4) Determine seii by the expression:

e pi+1 €

s -s
n+l n _ 1 +1 1
t T e yn+l(sn+l) +n° ;
e, 41 _ o o €,i e i+l %
5) Snel = (1 cu)sn+l +w s ) (0<w<l)
6) Test of convergence;
. . r e £ = qEritl € ., 601
1f the test is verified, Sn+l Sp+1l ¢ Ynel = Ynel

- If not, i = i+1 go to 3.
7) If n+l =N (number of step in t), stop.

If not, n=n+l1l go to 2.

The nonlinear equation (5.1)-(5.3) is approximated by a
finite difference method (or a finite element method).
This problem is solved by an over-relaxation method.




5.2 The variational Inequality

1) Initialization yo(x) =y0(x) R s0 =b for n=0.

2) i=o0, s:;'”'=sn 1
3) Determine y2+1 solution of: ii
b

. yn+1_yn f‘

i + + + f

(~—5% .¢-y?1)+aw21 .¢-y21) }

!

n+l n :

S -8 [

(5.4){ 2 (- 2 + 2™, o yT*h g
+ fn+1(¢(0) -y2+l(0)) for any $€K,. ;]

j,

n+l r‘

vn+l n+l :
4) s; = = Infix e(O,Ro)lyi (x) = 0} .1

5) 6) 7) are the same operations as (Pr)z. The varia-
tional inequality (5.4) is approximated by a finite
difference method (or a finite element method). This
problem is solved by a relaxation-projection method
(R. Glowinski, J.L. Lions and R. Tremolieres [l]).

We tested these methods for the following problem,
in one dimensional case:

28 3%e

t ax2

,

8(0,t) = t + %
{ 8(s(t),t) =0

%%(s(t),t = -A;g§ + 2t
/I=3E

2
L 8(x,00 = (X~ - 2x + 7.




AT

The exact solution is:

2
Blx,t) = (-~ 2x + t + —21-)"; s(t) = 2~/33¢ .

To solve (Pr)z, we took R0=T=1. We divided (O,Ro)

into 30 steps and (0,T) into 20 steps. The results,
presented here, were obtained for e==10-3 and w=0.15.
The computer time was approximately equal to 4s on

IBM 370-168. For the V.I, we took 30 steps of space

and 10 steps of time. The coefficient w was chosen to

be equal to 0.3. The computer time was the same or-

der as for the preceding method. The results on the

free boundary were very comparable, which are shown in the
following table:

t Exact sol. (Pr)2 (v.I)
0 0.2679 0.2679 0.2668
0.1 0.3267 0.3303 0.3235
0.2 0.3875 0.3956 0.3845
0.3 0.4508 0.4576 0.4468
0.4 0.5168 0.5290 0.5135
0.5 0.5858 0.5977 0.5832
0.6 0.6584 0.6711 0.6578
0.7 0.7351 0.7488 0.7363
0.8 0.8168 0.8325 0.8196
0.9 0.9046 0.9208 0.9112
1l 1.000 1.023 0.9965

We conclude a very good agreement of the numerical
results with the exact solution.

On the other hand, the method of fixed point will
be used. Particulary we notice the utilization of the
method presented in M. Sermange [l12}.




6. CONCLUSION
The methods, presented here, have a fairly general

character for the free boundary problems appearing in
the system including change of phase. They permit, in
particular, to take into account heat source along the
free surface and give efficient numerical algorithms.




APPENDIX I

lst step We shall consider the following initial
boundary value problems (A), (B) and (C):

. 2
-g—eé.::—ag in °<x<b' °<t<Tl
X
f @A) 6(0,t) = £(t) 0<t<T,
| (b, t) = 0 o0<t<T,
Le(x,O) =B°(x) 0<x<b,
(30 _ 2% _ 1.5
—€=———2--EX {x-s{t))9 in 0<x<R,
X
0<t<rT,
(B) { ©(0,t) = £(t) 0<t<T,
06(R,t) =0 0<t<T,
| 6(x,0) =3OM) 0<x<R, !
|
5‘.
/ 2 :
_g_%=_._3g in 0<x<R, 0<t<T,
X
) 1 8(0,t) = £(t) 0<t<rT,
Ox(R.t) = 0 0<t<T,
N
\ 8(x,0) = eo(x) 0<x<R.

Here R in (B) and (C) is an arbitrary number which i
satisfies R>b>0. s(t) in x6 of (B) satisfies i

1) secto,m ;
il) s(t) is monotone increasing in t ;
iii) s(0) =b, S(T)<R.
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Let 61, 66 and 6, be the solutions respectively of
(A), (B) and (C) under the assumption (Al). Then, from
the maximum principle, we have:

(1.1) 8,(x,8) < 0°(x,8) < 8,(x,t) in 0<x<b,
0<t<T.

From (I.l) it follows:

(1.2) | (o t)|
C (0,T]
{Iael l Iae | )
< sup{|=—=(0,t) 0,t) )
ox c%o,m 9% c%to, 1]
39
2nd_step We shall prove that |-== Z(0, &)l is

uniformly bounded for aay R (>b). C [0,T]

We introduce Green's function which satisfies 5;(R,t)=0

(0<t<T):
N(x,t; E-R,1) = 1 exp{ - (x-E+R) 2 }
' ’ 2/ (E=1) 4(t-1)
el apt - txtER)?
2/7(E=TT a(t=1)

= K(x,t ; £E-R,1) +K(x,t ; -E+R,T).
Integrating Green's identity:

CL)
2 aN d
) - T(Nez) 0

3
3r N5 -9 5%

on the domain 0<E§ <R, 0<§ <1< t-e and letting €+ 0,
we obtain:




= e

b
(I.3) ez(R~x,t) = I N(x,t: g-R,O)eo(E)dg

0
t 38

- J N(x't;-RpT) (0 T)dT
0 €

9§

x; 3 6 . i

Let denote v(r)-——E?(O ;7). We differentiate (I.3) with

respect to x and x+ R~0. We obtain:

t
+I Ny, t; ~R,2)£(1)dT.

t

(I.4) vit) = Zf v(t) %ﬁ (R,t; -R,1)dT
0 X !
i

t
+ 2! G(R,t; ~R,T)f(1)dx i
0 ]

b
- 2[ alx,t 5 5-R, 08, (01 aE,
0 i
. = . ~df(1)
where G(x,t;&,1)=K(x,t;€,t)-K(x,t;-£,1) and f(T) .

We note that the following inequality holds:

. (1.5) I l——-(R t; -R,T)|dt < Ao[ 2<%:e-ydy
4R vy
t

= y(R),
where A, is an absolute constant. Taking R sufficient-

0
ly large so that:

(1.6) 0<YM® <3,

we have ‘
i

.o
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(x.7) IVIC[O,T]
2 t .
S ITH & {IIOG(R,t: -R,T)f(T)dTIC[O'T]

+

c(o,T]

b
|I G(R,t; E-R,O)eo(i)dﬁl
0

D(R).

Let R+ +=, Then D(R) » D(+=) < +2, We see that for any
R which satisfies (I.6), there exists an absolute

constant D0 such that:
i (I.8) D(R) < DO'
{

Thus there exists some constant Dl such that:
; {
| (1.9) ‘VICIO,T] <Dy for any R>b.
30,
: Letting C, (b,T) =Sup{Dl , I-B—x—(O,t)l },
: c(o,T]

we obtain

209
(1.10) ljsr(o,t)l Ay Cl(b,T)
c(o,T]

for any R>b and any § 6(0,60] (60> 0).

-38~
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APPENDIX II

putting 8 -6' =w, we have

2
(11.1) 3t 7 - Sxg¥Wm g0 lxg Xgt) -+

%

Multiplying both sides of (IIl.l) by %—% and integrating

in Qt’ we have:

t (R
(11.2) J J 01%‘51 dx dt + 5[ 013‘"' ,t)lzdx
6’0 0
C.(t(R
0] J 0‘ oW
< = X H ldxdt.
€Jolo s ot

Here we used the monotone property of s(t). By use of

Schwartz's inequality, (I1.2) becomes

t (R
(I1.3) I I °|%—"Ti\2dxd1 + —j \aw( t)lz
o‘'0
c 1/2
0 ow
< =/T|s-s"] I5E]
¥ cro, 71 °% gy

for any te (0,T).

From (II.3) we have

. Cy 1/2
(II.4) \a =, < 2Als-s'l
L (Qy) € clo,T)
By (II.3) and (11.4), we have:
2 C,
(11.5) f | ( ey f€ax < z(--) 20 |s~s"] cro,Tl"

on the other hand, we have

PREEY OB e T L R L

i~ e———



A

x G
(11.6) Jwix,t) ] _J %'dx < 'Ry f§°|3_¥’ dx
0

172

3o CO
2R0T°—E—-|S -s' I

A

cro,Tl
(1I.6) implies (4.18).
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APPENDIX III

Putting yl-y2=w, we have
(aw _ 32w - .
3t - ;;7 + —(yl+eal) -—(y2+€a2) ta;-a, in Q...
| 30,t) =0 o<t<T,
W(Bopt) = O 0< t< T'
| W(x,0) =0 0<x<Ry-
ds

Here a; = - -ati + h (i=1,2). Let U(x,E; t; 1) be

the

Green's function of the linear system;

(2w _ 2%
it axz
| &, =0
ox' '
| ulRy,t) = 0
Then we have
t R
W(x,t) = I dt [
0 0
By (4.29), we have
(Im.1) [wix,t) |
Ry

[

0
Noting that

in QTI
o<t<T,
0<t<T.
0 1 -
Ulx,t; E.T){g(ylﬂal)

1 -
- E—(y2+ca2) +a, - az}dE.

U(x.t:e,r){%lyl-yzl-#2|al-a2|}d€-

-41-




T

RO
(III.Z) I U(x,t; Elt)dg = ll
0

we have

Ta
(m.3) |w < IO{Elyl-yzl

clQp) = (@)
ds ds
1l 2
+ ZLEE-- ?ﬁ?lclo T]}dt.
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